Abstract
BackgroundQuantitative regional strain analysis by speckle tracking echocardiography (STE) may be particularly useful in the assessment of myocardial ischemia and viability, although reliable measurement of regional strain remains challenging, especially in the circumferential and radial directions. We present an acute canine model that integrates a complex sonomicrometer array with microsphere blood flow measurements to evaluate regional myocardial strain and flow in the setting of graded coronary stenoses and dobutamine stress. We apply this unique model to rigorously evaluate a commercial 2D STE software package and explore fundamental regional myocardial flow-function relationships.MethodsSonomicrometers (16 crystals) were implanted in epicardial and endocardial pairs across the anterior myocardium of anesthetized open chest dogs (n = 7) to form three adjacent cubes representing the ischemic, border, and remote regions, as defined by their relative locations to a hydraulic occluder on the mid-left anterior descending coronary artery (LAD). Additional cardiac (n = 3) and extra-cardiac (n = 3) reference crystals were placed to define the cardiac axes and aid image registration. 2D short axis echocardiograms, sonometric data, and microsphere blood flow data were acquired at baseline and in the presence of mild and moderate LAD stenoses, both before and during low-dose dobutamine stress (5 μg/kg/min). Regional end-systolic 2D STE radial and circumferential strains were calculated with commercial software (EchoInsight) and compared to those determined by sonomicrometry and to microsphere blood flow measurements. Post-systolic indices (PSIs) were also calculated for radial and circumferential strains.ResultsLow-dose dobutamine augmented both strain and flow in the presence of mild and moderate stenoses. Regional 2D STE strains correlated moderately with strains assessed by sonomicrometry (Rradial = 0.56, p < 0.0001; Rcirc = 0.55, p < 0.0001) and with regional flow quantities (Rradial = 0.61, Rcirc = 0.63). Overall, correspondence between 2D STE and sonomicrometry was better in the circumferential direction (Bias ± 1.96 SD: − 1.0 ± 8.2% strain, p = 0.06) than the radial direction (5.7 ± 18.3%, p < 0.0001). Mean PSI values were greatest in low flow conditions and normalized with low-dose dobutamine.Conclusions2D STE identifies changes in regional end-systolic circumferential and radial strain produced by mild and moderate coronary stenoses and low-dose dobutamine stress. Regional 2D STE end-systolic strain measurements correlate modestly with regional sonomicrometer strain and microsphere flow measurements.
Highlights
The reliable assessment of myocardial function is fundamental to the diagnosis and characterization of ischemic heart disease
Correspondence between 2D speckle tracking echocardiography (STE) and sonomicrometry was better in the circumferential direction (Bias ± 1.96 SD: − 1.0 ± 8.2% strain, p = 0.06) than the radial direction (5.7 ± 18.3%, p < 0.0001)
Low-dose dobutamine stress in the presence of the mild stenoses substantially increased the magnitudes of mean aortic pressures, QLAD Peak, dP/dT indices, and rate-pressure product (RPP), there was only a modest, non-statistically significant increase in mean heart rate (HR)
Summary
The reliable assessment of myocardial function is fundamental to the diagnosis and characterization of ischemic heart disease. Quantitative regional strain analysis by speckle tracking echocardiography (STE) may be useful in the assessment of myocardial ischemia and viability, reliable measurement of regional strain remains challenging, especially in the circumferential and radial directions. We present an acute canine model that integrates a complex sonomicrometer array with microsphere blood flow measurements to evaluate regional myocardial strain and flow in the setting of graded coronary stenoses and dobutamine stress. We apply this unique model to rigorously evaluate a commercial 2D STE software package and explore fundamental regional myocardial flow-function relationships
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.