Abstract

In this paper, artificial neural networks (ANNs) are introduced to obtain improved regional low‐flow estimates at ungauged sites. A multilayer perceptron (MLP) network is used to identify the functional relationship between low‐flow quantiles and the physiographic variables. Each ANN is trained using the Levenberg‐Marquardt algorithm. To improve the generalization ability of a single ANN, several ANNs trained for the same task are used as an ensemble. The bootstrap aggregation (or bagging) approach is used to generate individual networks in the ensemble. The stacked generalization (or stacking) technique is adopted to combine the member networks of an ANN ensemble. The proposed approaches are applied to selected catchments in the province of Quebec, Canada, to obtain estimates for several representative low‐flow quantiles of summer and winter seasons. The jackknife validation procedure is used to evaluate the performance of the proposed models. The ANN‐based approaches are compared with the traditional parametric regression models. The results indicate that both the single and ensemble ANN models provide superior estimates than the traditional regression models. The ANN ensemble approaches provide better generalization ability than the single ANN models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.