Abstract

BackgroundLeft atrial (LA) conduction velocity (CV) is an electrical remodeling parameter of atrial fibrillation (AF) substrate. However, the pathophysiological substrate of LA-CV and its impact on outcomes after catheter ablation for AF have not been well evaluated.MethodsWe retrospectively evaluated 119 patients with AF who underwent catheter ablation and electroanatomical mapping during sinus rhythm. To measure regional LA-CV, we took triplet sites (A, B, and C) on the activation map and calculated the magnitude of the matched orthogonal projection vector between vector-AB and vector-AC, indicating two-dimensional CV. The median of the LA-CVs from four triad sites in both the anterior and posterior walls was set as the ‘model LA-CV’. We evaluated the impact of the model LA-CV on recurrence after ablation and relationship between the model LA-CV and LA-low voltage area (LVA) of < 0.5 mV.ResultsDuring the 12-month follow-up, 29 patients experienced recurrence. The LA-CV model was significantly correlated with ipsilateral LVA. The lower anterior model LA-CV was significantly associated with recurrence, with the cut-off value of 0.80 m/s having a sensitivity of 72% and specificity of 67%. Multivariable analysis revealed that the anterior model LA-CV (hazard ratio, 0.09; 95% confidence interval, 0.01–0.94; p = 0.043) and anterior LA-LVA (hazard ratio, 1.06; 95% confidence interval, 1.00–1.11; p = 0.033) were independently associated with AF recurrence. The anterior LA-LVA was mildly correlated with the anterior model LA-CV (r = -0.358; p < 0.001), and patients with both lower LA-CV and greater anterior LA-LVA based on each cut-off value had the worst prognosis. However, decreased LA-CV was more likely to be affected by the distribution pattern of the LVA rather than the total size of the LVA.ConclusionDecreased anterior LA-CV was a significant predictor of AF recurrence and was a useful electrical parameter in addition to LA-LVA for estimating AF arrhythmogenicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.