Abstract

Ionospheric delay is one of the most problematic errors in single-frequency (SF) global navigation satellite system (GNSS) data processing. Global/regional ionospheric maps (GIM/RIM) are thus vitally important for positioning users. Given the coexistence of multi-GNSS, the integration of quad-constellation observations is essential for improving the distribution of ionospheric penetration points (IPPs) and increasing redundant observations compared with the existing GIM products from the IGS analysis center. In this paper, quad-constellation (GPS/GLONASS/Galileo/BDS) observations are applied to set up the RIM over Australia with uncombined precise point positioning (UC-PPP) and a low-order spherical harmonic function. The generated RIMs are then introduced to ionosphere-corrected (IC) and ionosphere-weighted (IW) single-frequency PPP (IC-SFPPP and IW-SFPPP) to verify their performance in terms of positioning accuracy and convergence time. Taking the CODE GIM as a reference, the results show that the mean root mean square (RMS) of VTEC differences is 0.867 TECUs, and the quad-constellation RIM (referred as ‘RIM4′) can improve the RMS of RIMs compared to single-constellation mode at the edge of regional experiment area. The application of the RIM4 in the BDS IC-SFPPP results in a 18.38% improvement (from 100.47 cm to 82.00 cm) of 3D positioning RMS compared to the CODE-GIMs, whereas 35.36% enhancement (from 115.92 cm to 74.62 cm) of 3D positioning RMS is achievable during an active ionospheric period. Moreover, if the criterion of the convergence time is defined as when positioning errors in the horizontal and vertical directions are less than 0.3 m and 0.6 m for 20 consecutive epochs, the IW-SFPPP can significantly speed up the convergence time compared to the uncombined SFPPP; that is, the convergence time is reduced by 52.7% (from 37 min to 17.5 min), 37.2% (from 72.5 min to 45.5 min), and 37.1% (from 62.0 min to 39.0 min) in the north, east and up direction, respectively, at the 68% confidence level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call