Abstract
High-rise buildings (HRBs) are prone to high fire hazards due to their high occupant density, limited evacuation routes, and high fire load. The indicator system method, as a systematic evaluation method, is widely applied to assess HRB fire risk. However, the method is subjective because the determination of the indicator weights mainly relies on expert experience. In order to reduce the subjectivity of the indicator system method in assessing the fire risk of HRBs, this study proposes a new assessment method by combining the spatial Markov chain model and the indicator system method. In this new method, fire occurrence probability is calculated by the spatial Markov chain model using historical HRB fire accident data. An indicator system is built to characterize the fire consequence by the structure entropy weight method. Subsequently, HRBs in Beijing are used as a case to illustrate the practicality of this approach. Firstly, the spatial Markov chain model is trained and validated using the chi-square goodness-of-fit test based on fire accident data from 2018 to 2023 in Beijing. It was found that the best performance was achieved with the monthly period and the four-state. Then, the distribution of regional fire occurrence probability in April was predicted based on fire accident data in March 2023 in Beijing. It showed that areas with higher fire occurrence probability are mainly located in the central region, especially in the I District. Then, the indicator system was used to evaluate the HRB fire consequence in the I District. The assessment results showed that the areas with more severe fire consequences are mainly located in the II and IV Districts, due to the poor performance of the fire system or the absence of fire protection systems. Coupling the fire occurrence probability and its consequences shows that HRBs with higher fire risk are mainly located in area II and should be carefully supervised for fire management. This developed method can provide some insights into the fire safety management of HRBs and the layout of the fire stations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.