Abstract

China’s rapid economic development has increased the demand for coal. These results in Chinese coal mines being extended to deeper levels. The eastern Chinese, more economical developed, regions have a long history of coal mining and many coal mines have now started deep mining at a depth from 800 to 1500m. This increase in mining depth, geostresses, pressures, and gas content of the coal seam complicates geologic construction conditions. Lower permeability and softer coal contribute to increasing numbers of coal and gas outburst, and gas explosion, disasters. A search on effective methods of preventing gas disasters has been provided funds from the Chinese government since 1998. The National Engineering Research Center of Coal Gas Control and the Huainan and Huaibei Mining Group have conducted theoretical and experimental research on a regional gas extraction technology. The results included two important findings. First, grouped coal seams allow adoption of a method where a first, key protective layer is mined to protect upper and lower coal seams by increasing permeability from 400 to 3000 times. Desorption of gas and gas extraction in the protected coal seam of up to 60%, or more, may be achieved in this way. Second, a single seam may be protected by using a dense network of extraction boreholes consisting of cross and along-bed holes. Combined with this is increased use of water that increases extraction of coal seam gas by up to 50%. Engineering practice showed that regional gas drainage technology eliminates regional coal and gas outburst and also enables mining under low gas conditions. These research results have been adopted into the national safety codes of production technology. This paper systematically introduces the principles of the technology, the engineering methods and techniques, and the parameters of regional gas drainage. Engineering applications are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.