Abstract

Forest canopy heights derived from ICESat Geoscience Laser Altimeter System (GLAS) lidar data were combined with Landsat‐based disturbance history maps to assess forest regeneration rates in three regions of the eastern United States (Maine, Virginia, and Mississippi). GLAS observations were screened for topographic relief and waveform quality, and canopy heights were obtained by visual inspection of each waveform. Regressing the GLAS heights against the age of last disturbance yielded vertical growth rates of 0.6 m/yr (Maine), 1.0 m/yr (Virginia), and 1.2 m/yr (Mississippi). Growth rates, when combined with height‐biomass allometric relations, can be converted to estimates of aboveground wood productivity. The study demonstrates that large‐footprint lidar data can be used to measure vertical growth rates when averaged spatially, thus providing unique information on forest regeneration for carbon cycle studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.