Abstract

The Peak-Over-Threshold (POT) approach is an interesting alternative to the one based on Annual Maxima (AM) series since it gives the opportunity to take into consideration extreme events that would not be considered otherwise. It has also been recognized that the regional approach improves statistical inference when compared to the local approach, assuming that the region is statistically homogeneous. A regional POT approach was developed and applied to the network stations located in southern Quebec. POT series for 5-, 10-, 15-, 30-min and 1-, 2-, 6- and 12-h durations were constructed assuming a fixed exceedance rate. An analysis of local POT series showed that the intra-annual variability of the Generalized Pareto Distribution (GPD) parameters needs to be taken into consideration. Models of various complexities were defined combining local and regional representations as well as the intra-annual variability of GPD parameters. Regional likelihood was estimated and models were compared based on the Akaike Information Criterion (AIC). Models with regional shape and scale parameters and accounting for intra-annual variability were selected for all durations. Spatial covariates were also introduced through a simple model linking GPD parameters to latitude, longitude and altitude. The sensitivity of results to threshold values and selected models was also investigated. Interpolated maps of intense rainfall over the studied area are finally proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call