Abstract
It is well known that pulmonary edema is, in general, spatially nonuniform. Since the NMR spin-lattice relaxation time (T1) is increased by lung edema, the spatial distribution of T1 will be nonuniform. When the repetition time (TR) is short relative to the T1 of edematous lung, lung water content will be underestimated and this underestimation will be spatially nonuniform as well. Therefore, technical artifacts which are a complex function of lung edema and its spatial distribution are expected. We compared overall and regional (topographic) lung water density measurements obtained from living rats (with normal or edematous lungs) using repetition times of 2.0 and 6.2 s (at a magnetic field of 1 T), to quantify this uneven T1 effect for normal and edematous lungs. NMR measurements at TR = 2.0 s underestimated whole lung water density (-rho H2O) TR = 6.2 s) by an average of 7.2% in normal rats and 22.5% in rats with pulmonary edema. Regional -rho H2O underestimation (%delta-rho H2O) varied from 2.2 to 8.8% (groups means) in normal lungs and from 7.3 to 30.8% in edematous lungs. As a result, the interquartile range (of the voxel distribution as a function of rho H2O) underestimated the spatial nonuniformity of lung water density by 28.0% in edematous lungs, likely because of greater loss of NMR signal from high-water-density, long-T1 lung regions. Both %delta-rho H2O and T1 were significantly correlated with -rho H2O at TR = 6.2 s.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.