Abstract

Cell surface adhesion molecules N-CAM and L1 are implicated in central nervous system (CNS) cell migration and axon outgrowth in in vitro and in vivo developmental studies. These molecules show a differential distribution during CNS development, thus suggesting that they subserve different roles in process outgrowth and tissue organization. A variety of N-CAM isoforms are known, and individual N-CAMs undergo posttranslational modification. Such changes and the potential for generating numerous molecules may mediate development of specific neural cell contacts and circuitry. We evaluated immunohistochemical staining of polyclonal antibodies to L1 and N-CAM, as well as monoclonal antibodies directed against embryonic N-CAM and the 140 and 180 kDa species of N-CAM in human, rat, and mouse hippocampus. Staining patterns in the three species were qualitatively similar, but staining in the mouse hippocampus was quantitatively greater for some epitopes. A distinctive pattern of staining was found, corresponding to the known anatomy of the structure. Total N-CAM staining was intense in the hilus and inner molecular layer (ML) of the dentate gyrus with lighter staining in the dentate outer ML. The mossy fiber tract (MFT), comprising axons traveling from the dentate granule cells to CA3 pyramidal cells, was strongly stained by polyclonal antibody to N-CAM. There was abundant staining of the stratum radiatum (SR) and stratum oriens (SO) of CA1, but stratum lacunosum moleculare (LM) showed very little staining. The monoclonal antibody 12F11, which recognizes the 140 and 180 kDa forms of N-CAM, intensely stained the MFT, hilus, and inner ML.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.