Abstract

Ependymins are goldfish glycoproteins known to participate in biochemical reactions of memory consolidation after an operant vestibulomotor training-task. The distribution of these proteins was analysed by means of a highly sensitive and specific radioimmunoassay. Ependymins were shown to be characteristic constituents of the nervous system, but they were virtually absent from all other tissues investigated. They were widely distributed over many brain regions and particularly enriched in mesencephalic structures. In the optic tectum, the tegmentum and in the vagal lobes ependymins constituted 3.2, 2.8 and 3.5%, respectively, of the total protein content. The highest steady-state concentration of ependymins (15.4% of protein) was measured, however, in the brain extracellular fluid including the cerebrospinal fluid. Lactate dehydrogenase activity was monitored to demonstrate that only negligible amounts of cytoplasmic constituents were released during the collection of extracellular proteins. Ependymin concentrations were lower in those brain areas which contain few cell bodies, but many glial and fibrous elements. The specific distribution of the intrinsic ependymins was compared with that of intracerebroventricularly injected [(125)I]-labeled ependymin. This exogenous marker substance was quickly incorporated and then cleared rapidly from the central nervous system with a half-life of 2 h. Our quantitative analysis of the distribution of ependymins reveals that they are specific major constituents of the goldfish nervous system. Their fast turnover, their wide distribution over many brain regions, with some enrichment in mesencephalic structures, and especially their very high concentration in the extracellular brain fluid suggest that ependymins may act on neuronal membranes from the extracellular fluid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.