Abstract

1. The isometric response to arginine-vasopressin (10(-10)-10(-7)M) was studied in 2 mm long rabbit arterial segments isolated from several vascular beds (cutaneous, pial, renal, coronary, muscular, mesenteric and pulmonary). 2. Vasopressin induced contraction in central ear (cutaneous), basilar (pial), renal, coronary and saphenous (muscular) arteries, but had no effect in mesenteric and pulmonary arteries; the order of potency for the contraction was: ear > basilar > renal > coronary > saphenous arteries. 3. Treatment with the blocker of nitric oxide synthesis NG-nitro-L-arginine methyl ester (L-NAME; 10(-6)-10(-4) M) increased significantly (P < 0.05) the contraction to vasopressin in ear (148% of control), basilar (150% of control), renal (304% of control), coronary (437% of control) and saphenous (235% of control) arteries. Removal of the endothelium increased significantly (P < 0.05) the contraction to vasopressin in basilar (138% of control), renal (253% of control), coronary (637% of control) and saphenous (662% of control) arteries, but not in ear artery. Mesenteric and pulmonary arteries in the presence of L-NAME or after endothelium removal did not respond to vasopressin, as occurred in control conditions. 4. The specific antagonist for V1 vasopressin receptors d(CH2)5Tyr(Me)AVP (3 x 10(-9)-10(-7) M) was more potent (pA2 = 9.3-10.1) than the antagonist for both V1 and V2 vasopressin receptors desGly-d(CH2)5-D-Tyr(Et)ValAVP (10(-7)-10(-6) M) (pA2 = 7.4-8.4) to block the contraction to vasopressin of ear, basilar, renal and coronary arteries. 5. The specific V2 vasopressin agonist [deamino-Cys1, D-Arg8]-vasopressin (desmopressin) (10(-10)-10(-7) M) did not produce any effect in any effect in any of the arteries studied, with or without endothelium. 6. In arteries precontracted with endothelin-1, vasopressin or desmopressin did not produce relaxation. 7. These results suggest: (a) most arterial beds studied (5 of 7) exhibit contraction to vasopressin with different intensity; (b) the vasoconstriction to this peptide is mediated mainly by stimulation of V1 vasopressin receptors, and (c) endothelial nitric oxide may inhibit the vasoconstriction to this peptide, especially in coronary and renal vasculatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.