Abstract

To identify and characterize possible structural specialisations in the wall of the lower urinary tract (LUT) in the region of the bladder urethral junction (BUJ), with the specific objective of identifying regional variations in sensory nerve fibres and interstitial cells (ICs). The bladder base and urethra was removed from five male guinea pigs killed by cervical dislocation. Tissue pieces were incubated in Krebs' solution at 36 degrees C, gassed with 95% O(2) and 5% CO(2), fixed in 4% paraformaldehyde and processed for immunohistochemistry. The nonspecific marker vimentin and the general neuronal marker protein gene product (PGP) 9.5 were used to identify ICs and nerve fibres, respectively. Specific antibody binding was visualized using the appropriate secondary antibodies. The wall of the LUT in the region immediately between the bladder base and the urethra, the BUJ, differed in its cellular composition relative to the adjacent areas. PGP-positive (PGP(+)) nerve fibres, presumptive afferent fibres, lay within the urothelium running between the epithelial cells. There were two general nerve patterns: branching fibres with no varicosities, and complex fibres with varicosities. Fibre collaterals with varicosities exited the urothelium and occupied the space under the urothelium adjacent to the layer of suburothelial ICs. The latter, lamina propria and around the muscle bundles were identified using vimentin (vim(+)). In the base a few vim(+) cells were also PGP(+). In the region of the BUJ there was a decrease in the amount of smooth muscle. In this region, below the lamina propria, there was an area densely populated with vim(+)/PGP(+) ICs. Nerve fibres ran between the cells in this region. These structural specialisations within the urothelium and deeper layers of the BUJ suggest that they might be associated with specific functions. The localized highly branched network of the putative afferent nerves suggests the presence of a local axonal reflexes involving possible cross-talk between the urothelium and suburothelial layer. The function of the specialized region of ICs is not known and must await further information on the functional properties of this novel cell type. These observations show further the cellular heterogeneity of the cells in the LUT and the complexity of the structures. One of the major current challenges in functional urology is to understand the relationships between these novel structures and overall bladder and urethral function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call