Abstract

Fertilizer-intensive agriculture has been integral to increasing food production over the past half century hut has been accompanied by environmental costs. We use case studies of phosphorus fertilizer use in the world's most productive soybean-growing regions, Iowa (United States), Mato Grosso (Brazil), and Buenos Aires (Argentina), to examine influences of management and soil type on agriculture's most prevalent phosphorusrelated environmental consequences: eutrophication and consumption of Earth's finite phosphorus reserves. With increasing phosphorus inputs, achieving high yields on tropical soils with high phosphorus-binding capacity is becoming more common. This system has low eutrophication risks but increases demands on phosphorus supplies. In contrast, production in traditional breadbaskets, on soils with lower phosphorus-binding capacities, is being sustained with decreasing phosphorus inputs. However, in these regions, historical overuse of phosphorus may mean continued eutrophication risk even as pressures on phosphorus reserves diminish. We focus here on soybean production but illustrate how achieving sustainable agriculture involves an intricate optimization of local, regional, and global considerations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.