Abstract

Topographic differences in the sleep EEG have been repeatedly found in humans and rodents. A frontal predominance of EEG slow-wave activity (0.75-4 Hz; delta band) during non-rapid eye movement (NREM) sleep is particularly evident under conditions of increased sleep propensity. Local aspects of neuronal connectivity in the neocortex that are modified by specific neuronal stimulation may underlie these differences. To investigate the role of altered neuronal connectivity on anterior-posterior EEG topography, sleep was recorded in mice with congenital dysgenesis of the corpus callosum (B1 strain) during baseline and after 6 h sleep deprivation (SD). In these mice neuronal connections within a hemisphere are increased due to the longitudinal Probst bundle, a structure of re-routed callosal fibers. After SD the frequencies above 1.5 Hz within the delta band in NREM sleep were reduced in B1 mice compared with control C57BL/6 mice, a strain that has a normal corpus callosum, while power in the lowest frequency band (0.75-1.0 Hz) was enhanced in B1 mice. The differences between the strains subsided in the course of recovery. The redistribution of EEG power within the delta band in the frontal region in mice with a well developed Probst bundle, suggests a role of intracortical connectivity in local sleep regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.