Abstract

Acute effects of occlusion of the middle cerebral artery on local cerebral blood flow (LCBF) and local cerebral glucose utilization (LCGU) were investigated quantitatively in separate groups of rats using (14C) iodoantipyrine (14C-IAP) or (14C) 2-deoxyglucose (14C-DG) respectively. LCBF was significantly decreased in the ipsilateral cerebral cortices (to less than 45 ml/100 g/min or 30% of the control side) and the lateral part of the striatum (to 22 ml/100 g/min or 10% of the control side) which were supplied by the middle cerebral artery. No significant changes in LCBF were found in any other of the subcortical regions. In contrast to the unanimous decrease of LCBF in the ipsilateral cortices and the lateral striatum, complexed changes in LCGU were found in not only the cortex and striatum but also in many other subcortical regions which were closely related to the distribution of the mesencephalic dopamine neurons, such as globus pallidus, substantia nigra, subthalamic nucleus, nucleus accumbens, olfactory tubercle and lateral habenular nucleus. Relevance of this putative neurotransmitter and GABA on the glucose metabolism in ischemic brain is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call