Abstract
Lake Nansi, primarily dominated by macrophytes, faces threats from heavy metals and antibiotics due to human activity. This study investigated sediment dissolved organic matter (SDOM) characteristics and complexation of lead (Pb) and tetracycline (TC) in barren zone (BZ) and submerged macrophytes zone (PZ). Additionally, a microbial degradation experiment was conducted to examine its impact on the regional variations in complexation. SDOM abundance and protein-like materials in PZ was significantly greater than in BZ, indicating a probable contribution from the metabolism and decomposition of submerged macrophytes. Both zones exhibited a higher affinity of SDOM for Pb compared to TC, with all four components participating in Pb complexation. Protein-like materials in PZ had a higher binding ability (LogKPb=4.19 ± 1.07, LogKTC=3.89 ± 0.67) than in BZ (LogKPb=3.98 ± 0.61, LogKTC=3.69 ± 0.13), suggesting a potential presence of organically bound Pb and TC due to the higher abundance of protein-like materials in PZ. Although microbial communities differed noticeably, the degradation patterns of SDOM were similar in both zones, affecting the binding ability of SDOM in each. Notably, the fulvic-like component C4 emerged as the dominant binding material for both Pb and TC in both zones. Degradation might increase the amount of organically bound TC due to the increase in the LogKTC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.