Abstract

Regional dependence of microphysical and radiative effects of ice clouds on vertical structure of tropical tropospheric temperature is examined by analyzing thermodynamic budgets over clear sky, raining stratiform, convective, and non-raining stratiform regions with three two-dimensional sensitivity equilibrium cloud-resolving model simulation data. The decrease in the mean tropospheric cooling caused by radiative effects of ice clouds results from the decreases in local atmospheric cooling over clear sky regions around 12–16 km through the decrease in heat divergence and below 7.5 km through the decrease in radiative cooling and over non-raining stratiform regions around 6–13 km through the increase in latent heat. The increase in the mean tropospheric cooling caused by microphysical effects of ice clouds results from the increases in local atmospheric cooling over clear sky regions through the decrease in heat convergence below 4 km the increase in radiative cooling around 4–8 km and over non-raining stratiform regions through the increase in radiative cooling around 7–10 km. The raining regions do not show any significant thermal changes due to the cancellation between heat convergence and latent heat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.