Abstract

Cerebral metabolic rate for glucose (CMRG) was measured using the 14C-deoxyglucose technique in a stroke model of the gerbil produced by bilateral common carotid artery occlusion. During 30 minutes of ischemia, 14C-deoxyglucose uptake in the brain was increased along the border zone between the ischemic and nonischemic area and decreased in the ischemic areas. During the early stage of reperfusion (2 or 3 to 30 minutes), CMRG increased 50 to 150% in the cerebral cortex, caudoputamen and thalamus and 270 to 320% in the hippocampus, globus pallidus and amygdala. During the late stage of reperfusion (15 to 45 minutes), heterogeneity of CMRG appeared in the cerebral cortex, caudoputamen and thalamus. CMRG decreased to less than 50% of the control value in the cerebral cortex but remained at 200 to 300% of control in the hippocampus, globus pallidus and amygdala. The latter structures exhibited a larger and more protracted increase in glucose metabolism than the other structures most probably due to the histological vulnerability to ischemia of these structures. The relationship between the transient increase of the glucose metabolism and cell function is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.