Abstract

Comprehensive measurements were conducted in winter 2018 and combined with RMPAS-Chem model simulations to analyze the regional transport mechanisms of atmospheric pollutants over the North China Plain. The instruments used consisted of four Vaisala CL51 ceilometers for planetary boundary layer (PBL) heights and aerosol backscatter profiles, two wind profilers, one radiosonde for the profiles of meteorological variables, and an instrumented King-Air 350 aircraft for the profiles of atmospheric pollutants and meteorological variables. Additionally, observations from Environmental Protection Bureau stations were also analyzed, including hourly concentrations of surface PM2.5, SO2, NO2, CO, and O3. The results suggest that regional atmospheric pollutant transport is driven by a combination of topography and PBL processes. First, a mountain-induced vertical vortex forms over downwind regions; this elevates ground pollutants to form an elevated pollutant layer (EPL) at an altitude of 1.4–1.7 km. The EPL is then transported to Beijing via an enhanced southerly wind. Finally, the pollutants in the EPL are transported downward to the surface through PBL processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.