Abstract
Patterns and variability in reproductive output of pelagic fish are seldom determined at the ecosystem scale. We examined temporal and spatial variability in spawning by bay anchovy (Anchoa mitchilli), and in distribution and abundances of its pelagic early-life stages, throughout Chesapeake Bay. On two cruises in June and July 1993, ichthyoplankton and zooplankton were collected on 15 transects at 18.5-km (10 nautical mile) intervals over the 260-km length of the bay. Finer-scale sampling was carried out in a grid of stations between two transects on each cruise. Regional abundance patterns of bay anchovy eggs and larvae in the lower, mid, and upper Bay were compared with zooplankton abundances, environmental variables, and biovolumes of two gelatinous predators—the scyphomedusa Chrysaora quinquecirrha and the lobate ctenophore Mnemiopsis leidyi. Abundances of anchovy eggs, and, especially, larvae were higher in July than in June. Baywide daily egg production increased from 4.25×1012 in June to 8.43×1012 in July. Concentrations of zooplankton that are potential anchovy prey nearly doubled on a baywide basis between June and July, while biovolumes of the ctenophore declined. Except for scyphomedusan biovolumes, all analyzed organisms differed regionally in abundance and were patchily distributed at 1-km to 10-km sampling scales. Negative correlations between larval anchovy abundances and gelatinous predator biovolumes suggested that predation may have controlled abundances of bay anchovy early-life stages. Biomasses of adult anchovy, estimated from daily egg productions, were higher in the lower Bay and remarkably similar—23,433 tons in June and 23,194 tons in July. Most spawning by bay anchovy occurred during July in the seaward third of Chesapeake Bay, emphasizing the importance of this region for recruitment potential of the Bay's most abundant fish.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.