Abstract

Branched-chain-amino-acid:alpha-ketoglutarate transaminase and branched-chain alpha-ketoacid dehydrogenase have been assayed in brains of control and of streptozotocin-induced diabetic rats. Enzyme activities were measured in five distinct regions of the brain: cerebellum, pons + medulla, midbrain, thalamus + hypothalamus, and telencephalon. Subcellular distribution of these enzymes in whole brain was assessed by fractionating brain homogenate into cytoplasm, free mitochondria, and synaptosomes. The following enzymes were used as markers: lactate dehydrogenase for cytoplasm, glutamate dehydrogenase for mitochondria, and glutamate decarboxylase for synaptosomes. The activity of the branched-chain amino acid transaminase in all brain regions was considerably higher than that of the branched-chain alpha-ketoacid dehydrogenase. While the highest activity of the transaminase occurred in brain-stem regions, the highest activity of the dehydrogenase was present in cerebellum and telencephalon. Diabetes did not affect the activity of the transaminase, but it caused a decrease in the total activity of the dehydrogenase in midbrain and in thalamus + hypothalamus. The transaminase was localized in the cytoplasmic fraction of whole brain, while the dehydrogenase was enriched in the free mitochondria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call