Abstract

BackgroundImpairments of the visual system are implicated in psychotic disorders. However, studies exploring visual cortex (VC) morphology in this population are limited. Using data from the Bipolar-Schizophrenia Network on Intermediate Phenotypes consortium, we examined VC structure in psychosis probands and their first-degree relatives (RELs), sex differences in VC measures, and their relationships with cognitive and peripheral inflammatory markers. MethodsCortical thickness, surface area, and volume of the primary (Brodmann area 17/V1) and secondary (Brodmann area 18/V2) visual areas and the middle temporal (V5/MT) region were quantified using FreeSurfer version 6.0 in psychosis probands (n = 530), first-degree RELs (n = 544), and healthy control subjects (n = 323). Familiality estimates were determined for probands and RELs. General cognition, response inhibition, and emotion recognition functions were assessed. Systemic inflammation was measured in a subset of participants. ResultsPsychosis probands demonstrated significant area, thickness, and volume reductions in V1, V2, and MT, and their first-degree RELs demonstrated area and volume reductions in MT compared with control subjects. There was a higher degree of familiality for VC area than thickness. Area and volume reductions in V1 and V2 were sex dependent, affecting only female probands in a regionally specific manner. Reductions in some VC regions were correlated with poor general cognition, worse response inhibition, and increased C-reactive protein levels. ConclusionsThe visual cortex is a site of significant pathology in psychotic disorders, with distinct patterns of area and thickness changes, sex-specific and regional effects, potential contributions to cognitive impairments, and association with C-reactive protein levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call