Abstract

Gravity can be considered an optimal geophysical method for cave detection, given the high density contrast between an empty cavity and the surrounding materials. A number of methods can be used for regional and residual gravity anomaly separation, although they have not been tested in natural scenarios. With the purpose of comparing the different methods, we calculate the residual anomalies associated with the karst system of Gruta de las Maravillas whose cave morphology and dimensions are well-known. A total of 1857 field measurements, mostly distributed in a regular grid of 10×10m, cover the studied area. The microgravity data were acquired using a Scintrex CG5 gravimeter and topography control was carried out with a differential GPS. Regional anomaly maps were calculated by means of several algorithms to generate the corresponding residual gravimetric maps: polynomial first-order fitting, fast Fourier transformation with an upward continuation filter, moving average, minimum curvature and kriging methods. Results are analysed and discussed in terms of resolution, implying the capacity to detect shallow voids. We propose that polynomial fitting is the best technique when microgravity data are used to obtain the residual anomaly maps for cave detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.