Abstract

A flow-duration curve (FDC) shows the relationship between magnitude and frequency of daily streamflows over a specific time period. Artificial intelligence methods e.g. Support Vector Machines for Regression (SVR) and Artificial Neural Network (ANN) are useful techniques in the prediction of FDCs in ungagged basins. Regional analysis of FDCs were performed through SVR, ANN and Nonlinear Regression (NLR) using streamflow with durations of 0.02, 0.10, 0.20, 0.50 and 0.90% as dependent variables and six watershed characteristics chosen as effective independent variables on 33 selected watersheds in the Namak-Lake basin located in central zone of Iran. The results shows that the most important watershed characteristics are weighted average height, area, rangeland area, drainage density, permeable formation, and average stream slope. SVR has higher accuracy with relative root mean squared error (RMSEr) of 9.37 to 1.45 and Nash-Sutcliff criterion (NSE) of 0.54 to 0.91 than ANN with RMSEr with 9.42 to 3.79 and NSE of 0.39 to 0.86 and NLR with RMSEr with 18.04 to 3.38 and NSE of 0.53 to 0.79. In general, SVR is proposed to be used to estimate FDCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.