Abstract

The neural mechanisms underlying idiopathic dystonia are currently unknown. Genetic animal models, such as the dt s= hamster, a model of idiopathic paroxysmal dystonia, may be helpful to providing insights into the pathophysiology of this common movement disorder. Recent metabolic mapping studies in the hamster model, using 2-deoxyglucose autoradiography, demonstrated altered 2-deoxyglucose uptake in motor areas such as the striatum, ventral thalamic nuclei, red nucleus, and deep cerebellar nuclei, during dystonic attacks. Whereas the 2-deoxyglucose method is thought to reflect mainly acute alterations of synaptic activity, determination of cytochrome oxidase activity has been suggested as a method of choice to examine sustained baseline changes in neuronal activity. Therefore, in the present study quantitative cytochrome oxidase histochemistry was used to identify chronic regional alterations in the absence of dystonic attacks in mutant hamsters. For comparison with recent 2-deoxyglucose studies, cytochrome oxidase activity was also determined during a dystonic attack, which was induced by mild stress. Cytochrome oxidase was determined in 109 brain regions of dystonic hamsters and non-dystonic, age-matched control hamsters. In the absence of a dystonic attack, a tendency to decreased cytochrome oxidase activity was found in most brain regions, possibly due to retarded brain development in mutant hamsters. Significant decreases in cytochrome oxidase activity were found in motor areas and limbic structures, such as hippocampus, piriform cortex, fundus striatum, globus pallidus, substantia nigra pars reticulata, mediodorsal nucleus of the thalamus, ventral pallidum, and interpositus nucleus of the cerebellum. After induction of a dystonic attack, the trend of decreased cytochrome oxidase activity disappeared, except in globus pallidus and interpositus nucleus of the cerebellum. Although the significant alterations in cytochrome oxidase activity in the absence of a dystonic attack were moderate, the data are in line with previous findings in the mutant hamsters, indicating that dysfunctions of the basal ganglia and their output nuclei are involved in the dystonic condition. Altered neural activity in limbic structures, found in the absence of dystonic attacks in mutant hamsters, may contribute to the stress-susceptibility of the animals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call