Abstract

BackgroundBrains express structurally unique glycans, including human natural killer-1 (HNK-1), which participate in development and high-order functions. However, the regulatory mechanisms of expression of these brain-specific glycans are largely unknown. We examined whether arginine methylation, another type of protein modification essential for neural development, impacts the expression of various glycans in the developing brain. MethodsWe analyzed several types of glycans, including the HNK-1 epitope, in the cerebellum and cerebral cortex from mice with nervous system-specific knockout of protein arginine methyltransferase 1 (PRMT1). We also analyzed the expression levels of glycosyltransferases responsible for HNK-1 and of HNK-1 carrier glycoproteins by quantitative RT-PCR and western blotting. ResultsAmong several glycans, expression of HNK-1 glycan was strikingly upregulated in the PRMT1-deficient cerebellum. Furthermore, such upregulation was found in the cerebellum but not in the cerebral cortex. Regarding the mechanisms, we demonstrated that the mRNA level and activity of the responsible glycosyltransferase (B3gat1) were elevated in the knockout cerebellum. We also showed that the expression of HNK-1 carrier glycoproteins such as neural cell adhesion molecule (NCAM), L1 and AMPA receptor subunit GluA2 were also increased in the PRMT1-deficient cerebellum. ConclusionsLoss of arginine methylation leads to an increase in HNK-1 glycan in the developing cerebellum but not in the cerebral cortex via upregulation of the biosynthetic enzyme and carrier glycoproteins. General significancePRMT1 is a novel regulator of HNK-1 glycan production in the cerebellum. Mechanisms involving crosstalk between glycosylation and arginine methylation are suggested to occur.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.