Abstract

A growing body of evidence indicates that clinical use of ketamine as a promising antidepressant can be accompanied by psychotic-like side effects. Although, the generation of such effects is thought to be attributed to dysfunction of prefrontal GABAergic interneurons, the mechanism underlying ketamine's propsychotic-like action is not fully understood. Due to wide spectrum of behavioral abnormalities, it is hypothesized that ketamine action is not limited to only cortical GABA metabolism but may also involve alterations in other functional brain areas. To test it, we treated rats with ketamine (30 mg/kg, i.p.) for 5 days, and next we analyzed GABA metabolizing enzymes in cortex, cerebellum, hippocampus and striatum. Our results demonstrated that diminished GAD67 expression in cortex, cerebellum (by ∼60%) and in hippocampus (by ∼40%) correlated with lowered protein level in these areas. The expression of GAD65 isoform decreased by ∼45% in striatum, but pronounced increase by ∼90% was observed in hippocampus. Consecutively, reduction in glutamate decarboxylase activity and GABA concentration were detected in cortex, cerebellum and striatum, but not in hippocampus. Ketamine administration decreased GABA transaminase protein in cortex and striatum (by ∼50% and 30%, respectively), which was reflected in diminished activity of the enzyme. Also, a significant drop in succinic semialdehyde dehydrogenase activity in cortex, cerebellum and striatum was present. These data suggest a reduced utilization of GABA for energetic purposes. In addition, we observed synaptic GABA release to be reduced by ∼30% from striatal terminals. It correlated with lowered KCl-induced Ca2+ influx and decreased amount of L-type voltage-dependent calcium channel. Our results indicate that unique changes in GABA metabolism triggered by chronic ketamine treatment in functionally distinct brain regions may be involved in propsychotic-like effects of this drug.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.