Abstract
We applied the novel ProteinChip technology (SELDI-MS) to investigate and identify differentially regulated proteins upon myocardial remodelling in different heart regions. Tissue samples were isolated from the atria, the interventricular septum, and the right and left ventricles three months after surgically-induced myocardial infarction (MI) in rats. Corresponding protein extracts from control versus MI hearts were analysed on two different ProteinChip surfaces. In each of the functionally distinct cardiac regions, we obtained specific protein profile alterations upon myocardial remodelling. Most alterations were observed in the non-infarcted right ventricle, where down-regulation occurred more frequently than up-regulation of protein expression. Three of the differentially regulated proteins were identified: the metabolic enzyme triosephosphate isomerase (TIM), the cell signalling protein Raf-1 kinase inhibitory protein (RKIP), also known as phosphatidylethanolamine binding protein (PEBP), and the small heat shock protein alphaB-crystallin. These proteins showed a pronounced tissue-dependent regulation. TIM was down-regulated only in the atrium and in the left ventricle, RKIP/PEBP was down-regulated only in the right ventricle and in the interventricular septum, and alphaB-crystallin was up-regulated only in the right and in the left ventricle. A simple correlation of peak intensity changes using two of the identified peaks demonstrated the diagnostic potential of SELDI-MS. We conclude that this novel proteomic method is a powerful high-throughput tool for the fast detection of region-specific cardiac protein profiles in small biopsy samples, and that SELDI-MS may become a useful complementary technique for the diagnosis and prognosis of cardiac diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.