Abstract
Chronic exposure to hypoxia is associated with muscle atrophy (i.e., a reduction in muscle fiber cross-sectional area), reduced oxidative capacity, and capillary growth. It is controversial whether these changes are muscle and fiber type specific. We hypothesized that different regions of the same muscle would also respond differently to chronic hypoxia. To investigate this, we compared the deep (oxidative) and superficial (glycolytic) region of the plantaris muscle of eight male rats exposed to 4 wk of hypobaric hypoxia (410 mmHg, Po(2): 11.5 kPa) with those of nine normoxic rats. Hematocrit was higher in chronic hypoxic than control rats (59% vs. 50%, P < 0.001). Using histochemistry, we observed 10% fiber atrophy (P < 0.05) in both regions of the muscle but no shift in the fiber type composition and myoglobin concentration of the fibers. In hypoxic rats, succinate dehydrogenase (SDH) activity was elevated in fibers of each type in the superficial region (25%, P < 0.05) but not in the deep region, whereas in the deep region but not the superficial region the number of capillaries supplying a fiber was elevated (14%, P < 0.05). Model calculations showed that the region-specific alterations in fiber size, SDH activity, and capillary supply to a fiber prevented the occurrence of anoxic areas in the deep region but not in the superficial region. Inclusion of reported acclimatization-induced increases in mean capillary oxygen pressure attenuated the development of anoxic tissue areas in the superficial region of the muscle. We conclude that the determinants of tissue oxygenation show region-specific adaptations, resulting in a marked differential effect on tissue Po(2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.