Abstract

Pathophysiological heterogeneity in cardiac tissue is related to the occurrence of arrhythmias. Of importance are regions of slowed conduction, which have been implicated in the formation of conduction block and reentry. Experimentally, it has been a challenge to produce local heterogeneity in a manner that is both reversible and well controlled. Consequently, we developed a dual-zone superfusion chamber that can dynamically create a small (5 mm) central island of heterogeneity in cultured cardiac cell monolayers. Three different conditions were studied to explore the effect of regionally slowed conduction on wave propagation and reentry: depolarization by elevated extracellular potassium, sodium channel inhibition with lidocaine, and cell-cell decoupling with palmitoleic acid. Using optical mapping of transmembrane voltage, we found that the central region of slowed conduction always served as the core region around which a spiral wave formed and then revolved following a period of rapid pacing. Because of the localized slowing in the core region, we observed experimentally for the first time an S shape of the spiral wave front near its tip. These results indicate that a small region of slowed conduction can play a crucial role in the formation, anchoring, and modulation of reentrant spiral waves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.