Abstract
Feature selection is a critical component in supervised learning to improve model performance. Searching for the optimal feature candidates can be NP-hard. With limited data, cross-validation is widely used to alleviate overfitting, which unfortunately suffers from high computational cost. We propose a highly innovative strategy in feature selection to reduce the overfitting risk but without cross-validation. Our method selects the optimal sub-interval, i.e., region of interest (ROI), of a functional feature for functional linear regression where the response is a scalar and the predictor is a function. For each candidate sub-interval, we evaluate the overfitting risk by calculating a necessary sample size to achieve a pre-specified statistical power. Combining with a model accuracy measure, we rank these sub-intervals and select the ROI. The proposed method has been compared with other state-of-the-art feature selection methods on several reference datasets. The results show that our proposed method achieves an excellent performance in prediction accuracy and reduces computational cost substantially.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.