Abstract

High-resolution computed tomography (CT) reconstructions currently require either full field of view (FOV) exposure, resulting in high dose, or region of interest (ROI) exposure, resulting in artifacts. To obtain high-resolution 3D reconstruction of an ROI with minimal artifacts, we have developed a method involving a non-uniform ROI beam filter to reduce dose outside the ROI while acquiring the ROI at a higher dose. High-resolution, high-dose full-field projections of a phantom were obtained. ROIs in the images were selected and the low-dose data outside the ROI were simulated by adding various levels of noise to the projection data corresponding to a dose of 1/16 and 1/256 of the original dose. For an ROI of 30% FOV, artifacts in the reconstructed ROI were minimal for both dose reduction levels. For an ROI of 10% FOV, artifacts remained minimal only for the 1/16(th) dose case. The effect of the presence of a high contrast object outside the ROI was also studied. We found that the intensity of the artifacts increases with the contrast of the object, its size, and its distance from the axis of rotation. CT using an ROI filter provides a way to reconstruct an ROI with reduced integral dose and yet with minimal artifacts and improved spatial resolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call