Abstract

The recently developed weighted backprojection filtration (WBPF) algorithm using data redundancy has capabilities that make this algorithm an attractive candidate for reconstructing images from motion-contaminated projection data. First, the WBPF algorithm is capable of reconstructing region-of-interest (ROI) images from reduced-scan fan-beam data, which have less data than the short-scan data required to reconstruct the entire field of view (FOV). Second, this algorithm can reconstruct ROI images from truncated data. Using phantom simulation studies, we demonstrate how these unique capabilities can be exploited to reduce the amount of motion-contaminated data used for reconstruction. In particular, we use examples from cardiac imaging to illustrate how off-center phantom positioning combined with phase-interval ROI reconstruction can result in the suppression of motion artifacts. In terms of temporal resolution, reduced-scan reconstruction with 45% of a full-scan dataset can be used to improve the temporal resolution of a short-scan reconstruction by 25.8% if ungated data are used. For data gated at 66 beats per minute, reduced-scan reconstruction with 45% of a full-scan dataset can be used to improve the temporal resolution of a short-scan reconstruction by 7.9%. As a result of our studies, we believe that the WBPF algorithm demonstrates the potential for reconstructing quality ROI images from motion-contaminated fan-beam data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.