Abstract
Change detection is a fundamental task in the interpretation and understanding of remote sensing images. The aim is to partition the difference images acquired from multitemporal satellite images into changed and unchanged regions. Level set method is a promising way for remote sensing images change detection among the existed methods. Unfortunately, re-initialization, a necessary step in classical level set methods is known a complex and time-consuming process, which may limits their practical application in remote sensing images change detection. In this paper, we present an unsupervised change detection approach for remote sensing image based on an improved region-based active contour model without re-initialization. In order to eliminate the process for re-initialization and reduce the numerical errors caused by re-initialization, we describe an improving level set method for remote sensing images change detection. The proposed method introduced a distance regularization term into the energy function which could maintain a desired shape of the level set function and keep a signed distance profile near the zero level set. The experimental results on real multi-temporal remote sensing images demonstrate the advantages of our method in terms of human visual perception and segmentation accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.