Abstract
A simple edge-based preprocessing scheme is proposed in this paper for contrast enhancement of digital mammogram images while preserving the edges more accurately. This proposed method has three steps: (i) initially the breast region is segmented from the mammogram images by removing the film artifacts, (ii) the pectoral muscle region is identified and excluded from the breast region using a novel adaptive thresholding method, and (iii) an Improved Watershed Segmentation (IWS) is applied to segment the breast profile, and each region is enhanced with simple histogram equalization. The segmentation is performed in order to achieve adaptive contrast enhancement. The performance of this proposed pectoral removal method is analyzed with two measures: Hausdorff Distance (HD) and Mean of Absolute Error Distance (MAED), and the proposed contrast enhancement approach is been analyzed with the five diverse parameters along with the classification accuracy. The experiments and results show the potential performance of our proposed algorithm over the existing approaches with optimum results on all the performance measure and the classification performance is been evaluated with a hybrid neural network, our proposed method proves the better performance with the achievement of 92% accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.