Abstract
Zinc 3-hydroxymethyl-13-formyl-chlorin, 1, and its 3,13-inverted (3-formyl-13-hydroxymethyl) regioisomer, 2, and their corresponding 17,18-dehydrogenated porphyrins, 3 and 4, were synthesized for models of natural bacteriochlorophylls-c/d/e possessing 3(1)-OH and 13-C=O groups which self-aggregate in main light-harvesting antenna systems of green photosynthetic bacteria. Zinc chlorins 1 and 2 were monomers in neat THF and gave an obvious difference in their visible absorption spectra, indicating that sole inversion of the 3- and 13-substituents in a chlorin chromophore controlled their optical properties. In an aqueous Triton X-100 solution (a nonionic surfactant), zinc 3(1)-OH-13-CHO-chlorin 1 and porphyrin 3 self-aggregated as do natural bacteriochlorophylls, while zinc 3-CHO-13(1)-OH chlorin 2 and porphyrin 4 (the 3,13-inverted regioisomers of 1 and 3) hardly formed such large oligomers, showing that the inversion of the peripheral 3,13-substituents made their oligomerization unfavorable. FT-IR spectra of aggregated 1-4 in the solid film and their molecular modeling calculations suggested that the 17(2)-C=O moiety in inverted 2/4 interacted with its own 13(1)-OH group to disturb further aggregation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.