Abstract

Three types of tail-to-tail (PDCBTTT), head-to-tail (PDCBTHT), and head-to-head (PDCBTHH) regioisomeric polythiophene copolymers were synthesized by modification of the substitution positions of their alkoxycarbonyl side-chains. Chain conformation, and optical, electrochemical, morphological, and charge-transport characteristics of the polymers were significantly influenced by their regiochemistry. PDCBTHH showed an amorphous morphology due to strong steric hindrance between its head-to-head alkoxycarbonyl side-chains, resulting in the poorest performance in organic solar cells and transistors among three types. PDCBTHT had a regiorandom structure with both head-to-tail and tail-to-head linkages in a polymer chain. As determined by field-effect mobility measurements, a highly regioregular and planar PDCBTTT exhibited the highest hole mobility (μ = 0.065 cm2 V-1s-1), which was two orders of magnitude higher than that of the regiorandom PDCBTHT. The highest photovoltaic performance was also measured for PDCBTTT:a fullerene acceptor (PC71BM), by maintaining the packed structures of pristine PDCBTTT polymers in the blend with PC71BM. Altering the topology of alkoxycarbonyl side-chains of the copolymers resulted in significant differences in crystalline morphologies and electrical properties and thus should be carefully considered in the molecular design of organic semiconductors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call