Abstract

The biomimetic dimerization of 1,6-dihydropyridines (DHPs) remains a daunting challenge due to competitive disproportionation pathways. Herein we report the regioselective dimerization of densely functionalized 1,6-DHPs that allow direct access to the bis-nitrogen bicyclic scaffold of halicyclamines. Disproportionation triggered by the hydride shift of 1,6-DHP was suppressed by the use of geminal disubstituted substrates. Installation of an electron-withdrawing substituent at the C3 position was demonstrated to be crucial for facilitating biomimetic dimerization under metal-free conditions, with exquisite control of regioselectivity at ambient temperature. Our approach, featuring an appropriately functionalized and substantially stabilized substrate rather than merely adopting the highly reactive and labile hypothetical biosynthetic intermediate, allowed gram-scale and atom-economical synthesis of the bis-nitrogen bicyclic scaffold. Furthermore, conversion of a series of 1,6-DHPs provided mechanistic insights by circumventing the competitive disproportionation reaction. This revealed not only the innate reactivity of the conjugate diene system for [4 + 2] cycloaddition but also the reversibility of the dimerization reaction with multiple cationic intermediates in equilibrium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.