Abstract

Regio- and stereoselective palladium-pincer complex catalyzed allylation of sulfonylimines has been performed by using substituted trifluoro(allyl)borates and trimethylallylstannanes. The reactions provide the corresponding branched allylic products with excellent regioselectivity. The stereoselectivity of these processes is very high when trifluoro(cinnamyl)borate and trimethyl cinnamyl stannane are employed as allylic precursors; however, the reaction with trifluoro(crotyl)borate results in poor stereoselectivity. The major diastereomer formed in these reactions was the syn isomer, while the (previously reported) reactions with aldehyde electrophiles afforded the anti products, indicating that the mechanism of the stereoselection is dependent on the applied electrophile. Therefore, we have studied the mechanistic aspects of the allylation reactions by experimental studies and DFT modeling. The experimental mechanistic studies have clearly shown that potassium trifluoro(allyl)borate undergoes transmetallation with palladium-pincer complex 1 a affording an eta(1)-allylpalladium-pincer complex (1 e). The mechanism of the transfer of the allyl moiety from palladium to the sulfonylimine substrate was studied by DFT calculations at the B3PW91/LANL2DZ+P level of theory. These calculations have shown that the electrophilic substitution of sulfonylimines proceeds in a one-step process with a relatively low activation energy. The topology of the potential energy surface in the vicinity of the transition-state structure proved to be rather complicated as nine different geometries with similar energies were located as first order saddle points. Our studies have also shown that the high stereoselectivity with cinnamyl metal reagents stems from steric interactions in the TS structure of the allylation reaction. In addition, these studies have revealed that the mechanism of the stereoselection in the allylation of aldehydes and sulfonylimines is fundamentally different.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.