Abstract

A new catalytic asymmetric process, the iridium-catalyzed enantioselective allylic amination of (E)-cinnamyl and terminal aliphatic allylic carbonates, was developed by exploring complexes of chiral phosphoramidites. The reaction provided branched secondary and tertiary allylic amines in high yields with excellent regio- and enantioselectivity (13 examples over 94% ee). Although the reactions in polar solvent such as DMF, EtOH, and MeOH were fast, they gave low enantiomeric excesses. In contrast, reactions in THF displayed the most suitable balance of rate and enantioselectivity. Both the binaphthol unit and the disubstituted amine in the phosphoramidite affected reactivity and selectivity, and complexes of O,O'-(R)-(1,1'-dinaphthyl-2,2'-diyl)-N,N'-di-(R,R)-1-phenylethylphosphoramidite provided the highest reactivity and selectivity. Primary and cyclic secondary amines reacted at room temperature, and acyclic diethylamine reacted at 50 degrees C. p-Methoxy-substituted cinnamyl carbonate reacted similarly to the unsubstituted cinnamyl carbonate, but the o-methoxy-substituted substrate gave lower enantiomeric excess. High ee's were also observed for the products from the reaction of furanyl- and alkyl-substituted (E)-allylic carbonates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.