Abstract
In this paper, I extend the standard specification of the empirical similarity (ES) model of Gilboa et al. (Rev Econ Stat 88:433–444, 2006) to account for changes in parameters. I implement this by allowing for a combination of component ES models in the spirit of Gaussian mixture models. The predictive power of the modified model, along with that of the standard specification, will be assessed and compared to the baseline models consisting of autoregressions and Markov-switching autoregressions within a simulation exercise. Finally, we also compare the predictive ability of models using data on quarterly US real GDP growth. The results indicate that in situations of a more complex regime-switching behavior and a moderate to high autocorrelation in series, modified ES model demonstrates a better empirical fit. In addition, results of the empirical example show that modified ES models can better predict more extreme observations.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.