Abstract

We present regime maps for subsonic flow in dense gas-particle systems, which demarcate regions of compressible and (effectively) incompressible flow. These maps should aid researchers and industrialists in selecting the appropriate modeling approach, as well as in verifying numerical solvers. Demonstrating compressibility at Mach numbers lower than 0.3, we show that this commonly used criterion is insufficient for flows in porous media. For M < 0.1, systems dominated by heat exchange experience compressible effects at a fixed value of a dimensionless system parameter, while critical parameters in an adiabatic system can be assessed using a simple relation of the Mach number. Ultimately, we present a model based on computational fluid dynamics and discrete element method (CFD-DEM) allowing efficient calculation of subsonic compressible gas-particle flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.