Abstract

We experimentally study the formation and stability of miscible fluid threads made of high-viscosity liquids using hydrodynamic focusing sections. Miscible core annular flows are useful for transporting viscous materials and can be destabilized for enhancing mass transfer. We delineate phase-diagrams of the generation of lubricated threads from low to large viscosity contrasts with various diffusion coefficients. Depending on fluid properties and flow rates of injection, stable microflows are classified into engulfment, thread, and tubing regimes. For low Péclet numbers, we examine thread dynamics when diffusive effects strongly alter basic flow structures and induce new flow configurations, including ultra-diffusive and diffusive instability regimes. Another unstable flow arrangement is investigated for moderate Reynolds numbers where small threads are rapidly destabilized in the inertial flow field of the sheath fluid near the fluid junction. This study provides an overview of stable and unstable flow regimes and their transitions during the formation of miscible viscous fluid filaments in square microchannels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.