Abstract

This paper investigates whether a regime switching model of stochastic lumber prices is better for the analysis of optimal harvesting problems in forestry than a more traditional single regime model. Prices of lumber derivatives are used to calibrate a regime switching model, with each of two regimes characterized by a different mean reverting process. A single regime, mean reverting process is also calibrated. The value of a representative stand of trees and optimal harvesting prices are determined by specifying a Hamilton–Jacobi–Bellman Variational Inequality, which is solved for both pricing models using a implicit finite difference approach. The regime switching model is found to more closely match the behavior of futures prices than the single regime model. In addition, analysis of a tree harvesting problem indicates significant differences in terms of land value and optimal harvest thresholds between the regime switching and single regime models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.