Abstract

Channel deepening often triggers positive feedback between tidal deformation, sediment import and drag reduction, which leads to the regime shift in estuaries from low-turbid to hyper-turbid state. In this study, a transition in profiles of suspended sediment concentration (SSC) is hypothesised by including a positive feedback loop of vertical mixing and settling. Such a hypothesis is validated by the historical observations in the North Passage of Changjiang (Yangtze River) Estuary, with decreasing SSC in mid-lower layers and increasing SSC near the bed after the deepening. A mobile pool of concentrated benthic suspensions (CBS) develops in the North Passage, with a tidally averaged length of ~20 km and a mean thickness of ~4 m. The width of the CBS pool is limited (<1 km) as the CBS is concentrated in the Deepwater Navigational Channel. The movements of the CBS pool, combined with tidal asymmetry (e.g., slack-water asymmetry and lateral flow asymmetry), results in sediment trapping in the middle reaches and on the south flank of the channel. Observations by a bottom tripod system show the response of friction/drag coefficient to sediment concentration: (1) nearly linear decrease within low SSC (<10 kg/m3); (2) constant and minimum coefficient (with drag reduction up to 60–80%) in the presence of CBS (10–80 kg/m3). An empirical relationship was derived, which can be used to predict the friction coefficient and the magnitude of drag reduction for sediment transport studies, particularly for modelling regime shifts in estuaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.