Abstract
In this work, we give a description of all σ-finite measures on the space of rooted compact R-trees which satisfy a certain regenerative property. We show that any infinite measure which satisfies the regenerative property is the of a Levy tree, that is, the of a tree-valued random variable that describes the genealogy of a population evolving according to a continuous-state branching process. On the other hand, we prove that a probability measure with the regenerative property must be the law of the genealogical tree associated with a continuous-time discrete-state branching process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.