Abstract

Regenerative potentials in rat neostriatal neurons were studied using the in vitro slice preparation. Some of the recorded neurons were intracellularly labeled with HRP. All had the morphological characteristics of the medium spiny neuron. Application of TTX (10(-5) g/ml) to the superfusing medium abolished fast action potentials generated by intracellularly injected depolarizing current. Application of TEA prolonged the spike duration by decreasing its repolarizing rate without affecting rising phase. After suppression of K-conductance by TEA, depolarizing current elicited both fast and slow all or none action potentials. Combined treatment with TTX and TEA revealed two types of depolarizing potentials, a slowly rising graded depolarizing potential and slow action potential. Substitution of Ca++ with Mg++ in the medium diminished the amplitude of these potentials. They were also blocked by application of Co++ into the superfusion medium. The duration of slow action potentials were increased with increase in the intensity of current pulse, with decrease in the resting membrane potential, and with increase in the concentration of TEA in the bathing medium. In the normal Ringer solution, local stimulation elicited depolarizing postsynaptic responses (DPSPs). Large DPSPs evoked by strong local stimulation triggered one or two fast action potentials. In some neurons, large DPSPs could trigger both fast and slow action potentials. They were consistently triggered after application of TEA (1 mM) to the medium. When a relatively high concentration of TEA (4 mM) was applied to the Ringer solution, locally evoked DPSPs could trigger only slow action potentials. In double stimulation experiments, a large reduction in the amplitude and the duration of test DPSPs was observed up to about 150 ms interstimulus interval.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call