Abstract
ABSTRACTWe introduce Markov Chain Importance Sampling (MCIS), which combines importance sampling (IS) and Markov Chain Monte Carlo (MCMC) to estimate some characteristics of a non-normalized multi-dimensional distribution. Especially, we introduce some importance functions whose variates are regeneratively generated by MCMC; these variates then are used to estimate the quantity of interest through IS. Because MCIS is regenerative, it overcomes the burn-in problem associated with MCMC. It could also speed up the mixing rate in MCMC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.