Abstract

This article focuses on desulfurization, of hot syngas from gasification of solid fossil fuels, in the temperature range of 300–500 °C via copper-based adsorbents. The slip of H2S above the developed adsorbent materials for hot cleaning of syngas has been studied together with the regeneration mechanism, using thermodynamic analysis, thermogravimetry, and packed-bed reactor experiments, in order to establish an efficient approach to regenerate the adsorbent. Supported copper on gamma alumina used as H2S adsorbent in this study shows H2S slips lower than 5 ppm in the temperature range of 350–550 °C. The copper-based sorbent shows around 2 wt % sulfur sorption capacity in the temperature range of study. The kinetic evaluation confirms that the sorption kinetics for this sorbent yield sufficient performance for real process operation even at such low temperatures. Aiming at isothermal operation, the chemical swing process is identified as an efficient way to regenerate the adsorbent. In this regeneration pro...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.